论文标题
探索鲁棒图结构学习的高阶结构
Exploring High-Order Structure for Robust Graph Structure Learning
论文作者
论文摘要
最近的研究表明,图形神经网络(GNN)容易受到对抗性攻击的影响,即,不可感知的结构扰动可能会欺骗GNN来做出错误的预测。一些研究探讨了干净图的特定特性,例如防御攻击的特征平滑度,但是对其进行分析尚未得到充分研究。在本文中,我们从特征平滑度的角度分析了对图表的对抗性攻击,这进一步有助于GNN的有效新的对抗性防御算法。我们发现,高阶图结构的效果是用于处理图形结构的更光滑的滤波器。直观地,高阶图形结构表示节点之间的路径数,其中较大的数字表示更紧密的连接,因此自然有助于防御对抗性扰动。此外,我们提出了一种新型算法,将高阶结构信息纳入图结构学习。我们在三个流行的基准数据集,Cora,Citeer和Polblogs上进行实验。广泛的实验证明了我们方法防御图形对抗攻击的有效性。
Recent studies show that Graph Neural Networks (GNNs) are vulnerable to adversarial attack, i.e., an imperceptible structure perturbation can fool GNNs to make wrong predictions. Some researches explore specific properties of clean graphs such as the feature smoothness to defense the attack, but the analysis of it has not been well-studied. In this paper, we analyze the adversarial attack on graphs from the perspective of feature smoothness which further contributes to an efficient new adversarial defensive algorithm for GNNs. We discover that the effect of the high-order graph structure is a smoother filter for processing graph structures. Intuitively, the high-order graph structure denotes the path number between nodes, where larger number indicates closer connection, so it naturally contributes to defense the adversarial perturbation. Further, we propose a novel algorithm that incorporates the high-order structural information into the graph structure learning. We perform experiments on three popular benchmark datasets, Cora, Citeseer and Polblogs. Extensive experiments demonstrate the effectiveness of our method for defending against graph adversarial attacks.