论文标题
Bert-asc:辅助句子构造,用于隐式方面学习中的情感分析
BERT-ASC: Auxiliary-Sentence Construction for Implicit Aspect Learning in Sentiment Analysis
论文作者
论文摘要
储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。
Aspect-based sentiment analysis (ABSA) aims to associate a text with a set of aspects and infer their respective sentimental polarities. State-of-the-art approaches are built on fine-tuning pre-trained language models, focusing on learning aspect-specific representations from the corpus. However, aspects are often expressed implicitly, making implicit mapping challenging without sufficient labeled examples, which may be scarce in real-world scenarios. This paper proposes a unified framework to address aspect categorization and aspect-based sentiment subtasks. We introduce a mechanism to construct an auxiliary-sentence for the implicit aspect using the corpus's semantic information. We then encourage BERT to learn aspect-specific representation in response to this auxiliary-sentence, not the aspect itself. We evaluate our approach on real benchmark datasets for both ABSA and Targeted-ABSA tasks. Our experiments show that it consistently achieves state-of-the-art performance in aspect categorization and aspect-based sentiment across all datasets, with considerable improvement margins. The BERT-ASC code is available at https://github.com/amurtadha/BERT-ASC.