论文标题

三方顶点模型和结

Three-partite vertex model and knot invariants

论文作者

Kassenova, T. K., Tsyba, P., Razina, O., Myrzakulov, R.

论文摘要

这项工作致力于考虑以$ n $ states的顶点模型来构建辫子组发电机的代表,这提供了研究结不变的好方法。当不同的旋转$(N-1)/2 $都位于结上的所有组件上时,就为结一个代数公式不变。该作品总结了从三方顶点模型中输出编织生成器表示的过程。这种表示可以研究具有多色链接的结的不变性,其中结的组件具有不同的旋转。从从三方顶点型号的$ r $ - 久负式获得的辫子发电机的角度研究了带有多色链接的结的公式。由此产生的结$ 5_2 $对应于琼斯多项式和Homfly-pt。

This work is dedicated to the consideration of the construction of a representation of braid group generators from vertex models with $N$-states, which provides a great way to study the knot invariant. An algebraic formula is proposed for the knot invariant when different spins $(N-1)/2$ are located on all components of the knot. The work summarizes procedure outputting braid generator representations from three-partite vertex model. This representation made it possible to study the invariant of a knot with multi-colored links, where the components of the knot have different spins. The formula for the invariant of knot with a multi-colored link is studied from the point of view of the braid generators obtained from the $R$-matrices of three-partite vertex models. The resulting knot invariant $5_2$ corresponds to the Jones polynomial and HOMFLY-PT.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源