论文标题
低层$ \ mathbf {j = \ tfrac {3} {2} {2}^\ pm \,δ} $ - baryons的组成
Composition of low-lying $\mathbf{J=\tfrac{3}{2}^\pm \,Δ}$-baryons
论文作者
论文摘要
Poincaré-covariant Quark+Diquark Faddeev方程用于发展对四个最轻$的结构的见解(i,j^p = \ tfrac {3} {2} {2},\ tfrac {3} {3} {2} {2}^\ pm)$ BARYON MULVYEN。尽管这些系统可以包含等轴 - 轴向量和等值器 - 矢量diquarks,但人们可能会忽略后者,但仍然可以得出可靠的描述。 $(\ tfrac {3} {2},\ tfrac {3} {2}^+)$状态是更简单的系统,具有与夸克模型图片相似的功能,\ emph {e.g}。 $δ(1600)\ tfrac {3} {2}^+$可以合理地看作是$δ(1232)\ tfrac {3} {2}^+$的径向激发。 $(\ tfrac {3} {2},\ tfrac {3} {2}^ - )$状态更为复杂:$δ(1940)\ tfrac {3} {2} {2}^ - $几乎没有表达$δ(1700)\ tfrac \ tfrac \ tfrac的径向激发的字符。尽管后者的剩余波函数主要是$ \ mathsf p $ - 波,但$δ(1940)\ tfrac {3} {2} {2}^ - $ wave函数是$ \ mathsf s $ - $ tfrac {3}^ - $ \ tfrac {3}^ - 与Quark模型预期发生冲突。可以测试这些预测的实验,例如大动量传递共振电激发,可能会阐明新兴强体质量的性质。
A Poincaré-covariant quark+diquark Faddeev equation is used to develop insights into the structure of the four lightest $(I,J^P=\tfrac{3}{2},\tfrac{3}{2}^\pm)$ baryon multiplets. Whilst these systems can contain isovector-axialvector and isovector-vector diquarks, one may neglect the latter and still arrive at a reliable description. The $(\tfrac{3}{2},\tfrac{3}{2}^+)$ states are the simpler systems, with features that bear some resemblance to quark model pictures, \emph{e.g}., their most prominent rest-frame orbital angular momentum component is $\mathsf S$-wave and the $Δ(1600)\tfrac{3}{2}^+$ may reasonably be viewed as a radial excitation of the $Δ(1232)\tfrac{3}{2}^+$. The $(\tfrac{3}{2},\tfrac{3}{2}^-)$ states are more complex: the $Δ(1940)\tfrac{3}{2}^-$ expresses little of the character of a radial excitation of the $Δ(1700)\tfrac{3}{2}^-$; and whilst the rest-frame wave function of the latter is predominantly $\mathsf P$-wave, the leading piece in the $Δ(1940)\tfrac{3}{2}^-$ wave function is $\mathsf S$-wave, in conflict with quark model expectations. Experiments that can test these predictions, such as large momentum transfer resonance electroexcitation, may shed light on the nature of emergent hadron mass.