论文标题

具有自描述网络的几个命名实体识别

Few-shot Named Entity Recognition with Self-describing Networks

论文作者

Chen, Jiawei, Liu, Qing, Lin, Hongyu, Han, Xianpei, Sun, Le

论文摘要

很少有人需要从有限实例中有效捕获信息,并从外部资源中转移有用的知识。在本文中,我们提出了一种自我描述的机制,用于几个弹药,可以通过描述实体类型和使用通用概念集来有效地利用说明性实例,并从外部资源中精确地转移知识。具体而言,我们设计了自称网络(SDNET),这是一个SEQ2SEQ生成模型,可以通过概念普遍描述提及,将新颖的实体类型自动映射到概念上,并自适应地识别实体。我们用大型语料库预先培训SDNET,并对来自不同领域的8个基准测试进行实验。实验表明,SDNET在所有基准测试基准上实现了竞争性能,并在6个基准上实现了新的最先进的表现,从而证明了其有效性和鲁棒性。

Few-shot NER needs to effectively capture information from limited instances and transfer useful knowledge from external resources. In this paper, we propose a self-describing mechanism for few-shot NER, which can effectively leverage illustrative instances and precisely transfer knowledge from external resources by describing both entity types and mentions using a universal concept set. Specifically, we design Self-describing Networks (SDNet), a Seq2Seq generation model which can universally describe mentions using concepts, automatically map novel entity types to concepts, and adaptively recognize entities on-demand. We pre-train SDNet with large-scale corpus, and conduct experiments on 8 benchmarks from different domains. Experiments show that SDNet achieves competitive performances on all benchmarks and achieves the new state-of-the-art on 6 benchmarks, which demonstrates its effectiveness and robustness.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源