论文标题

Monai标签:3D医学图像的AI辅助交互式标签的框架

MONAI Label: A framework for AI-assisted Interactive Labeling of 3D Medical Images

论文作者

Diaz-Pinto, Andres, Alle, Sachidanand, Nath, Vishwesh, Tang, Yucheng, Ihsani, Alvin, Asad, Muhammad, Pérez-García, Fernando, Mehta, Pritesh, Li, Wenqi, Flores, Mona, Roth, Holger R., Vercauteren, Tom, Xu, Daguang, Dogra, Prerna, Ourselin, Sebastien, Feng, Andrew, Cardoso, M. Jorge

论文摘要

考虑到手动注释非常昂贵且耗时,因此缺乏注释数据集是培训新的特定任务监督机器学习模型的主要瓶颈。为了解决这个问题,我们提出了Monai Label,这是一个免费的开源框架,可促进基于人工智能(AI)模型的应用程序开发,旨在减少注释放射学数据集所需的时间。通过Monai标签,研究人员可以开发针对其专业领域的AI注释应用程序。它使研究人员可以轻松地将其应用程序部署为服务,可以通过其首选用户界面向临床医生提供。目前,Monai标签很容易支持本地安装的(3D Slicer)和基于Web的(OHIF)前端,并提供了两种积极的学习策略,以促进和加快细分算法的培训。 MONAI标签使研究人员可以通过使其他研究人员和临床医生将其提供给其基于AI的注释应用程序的增量改进。此外,Monai标签还提供了基于AI的交互式和非相互作用的标签应用程序,可直接从架子上使用,作为任何给定数据集的插件。可以在两个公共数据集上观察到使用交互式模型的大幅减少注释时间。

The lack of annotated datasets is a major bottleneck for training new task-specific supervised machine learning models, considering that manual annotation is extremely expensive and time-consuming. To address this problem, we present MONAI Label, a free and open-source framework that facilitates the development of applications based on artificial intelligence (AI) models that aim at reducing the time required to annotate radiology datasets. Through MONAI Label, researchers can develop AI annotation applications focusing on their domain of expertise. It allows researchers to readily deploy their apps as services, which can be made available to clinicians via their preferred user interface. Currently, MONAI Label readily supports locally installed (3D Slicer) and web-based (OHIF) frontends and offers two active learning strategies to facilitate and speed up the training of segmentation algorithms. MONAI Label allows researchers to make incremental improvements to their AI-based annotation application by making them available to other researchers and clinicians alike. Additionally, MONAI Label provides sample AI-based interactive and non-interactive labeling applications, that can be used directly off the shelf, as plug-and-play to any given dataset. Significant reduced annotation times using the interactive model can be observed on two public datasets.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源