论文标题
通过异质图神经网络检测以太坊欺诈检测
Ethereum Fraud Detection with Heterogeneous Graph Neural Networks
论文作者
论文摘要
尽管与以太坊这样的加密货币交易变得越来越普遍,但欺诈和其他犯罪交易并不少见。图分析算法和机器学习技术检测可疑交易,这些交易导致大型交易网络中的网络钓鱼。已经提出了许多图形神经网络(GNN)模型将深度学习技术应用于图形结构。尽管在以太坊交易网络中使用GNN模型进行了网络钓鱼检测的研究,但尚未研究针对顶点和边缘数量的规模以及标签不平衡的模型。在本文中,我们比较了GNN模型在实际以太坊交易网络数据集和网络钓鱼报告的标签数据上的模型性能,以详尽地比较和验证哪些GNN模型和超参数产生最佳精度。具体而言,我们评估了代表性同质GNN模型的模型性能,该模型考虑了单型节点和边缘以及支持不同类型的节点和边缘的异质GNN模型。我们表明,异质模型比同质模型具有更好的模型性能。特别是,RGCN模型在整体指标中取得了最佳性能。
While transactions with cryptocurrencies such as Ethereum are becoming more prevalent, fraud and other criminal transactions are not uncommon. Graph analysis algorithms and machine learning techniques detect suspicious transactions that lead to phishing in large transaction networks. Many graph neural network (GNN) models have been proposed to apply deep learning techniques to graph structures. Although there is research on phishing detection using GNN models in the Ethereum transaction network, models that address the scale of the number of vertices and edges and the imbalance of labels have not yet been studied. In this paper, we compared the model performance of GNN models on the actual Ethereum transaction network dataset and phishing reported label data to exhaustively compare and verify which GNN models and hyperparameters produce the best accuracy. Specifically, we evaluated the model performance of representative homogeneous GNN models which consider single-type nodes and edges and heterogeneous GNN models which support different types of nodes and edges. We showed that heterogeneous models had better model performance than homogeneous models. In particular, the RGCN model achieved the best performance in the overall metrics.