论文标题
DynamiceArthnet:每日多光谱卫星数据集用于语义变化分段
DynamicEarthNet: Daily Multi-Spectral Satellite Dataset for Semantic Change Segmentation
论文作者
论文摘要
地球观察是监测特定感兴趣领域土地使用进化的基本工具。在这种情况下,观察和精确定义变化需要时间序列数据和像素的分割。为此,我们提出了DynamiceArthnet数据集,该数据集由每日的,多光谱的卫星观测值组成,这些卫星观测值是通过Planet Labs的图像分布在全球范围内的75个选定领域。这些观察结果与7个土地使用和土地覆盖(LULC)类别的像素的每月语义分段标签配对。 DynamiceArthnet是第一个提供每日测量和高质量标签的独特组合的数据集。在我们的实验中,我们比较了几个已建立的基准,它们要么将日常观察结果用作额外的培训数据(半监督学习),要么同时将多个观察结果(时空学习)作为未来研究的参考。最后,我们提出了一个新的评估度量标准SC,以解决与时间序列语义变化细分相关的具体挑战。数据可在以下网址获得:https://mediatum.ub.tum.de/1650201。
Earth observation is a fundamental tool for monitoring the evolution of land use in specific areas of interest. Observing and precisely defining change, in this context, requires both time-series data and pixel-wise segmentations. To that end, we propose the DynamicEarthNet dataset that consists of daily, multi-spectral satellite observations of 75 selected areas of interest distributed over the globe with imagery from Planet Labs. These observations are paired with pixel-wise monthly semantic segmentation labels of 7 land use and land cover (LULC) classes. DynamicEarthNet is the first dataset that provides this unique combination of daily measurements and high-quality labels. In our experiments, we compare several established baselines that either utilize the daily observations as additional training data (semi-supervised learning) or multiple observations at once (spatio-temporal learning) as a point of reference for future research. Finally, we propose a new evaluation metric SCS that addresses the specific challenges associated with time-series semantic change segmentation. The data is available at: https://mediatum.ub.tum.de/1650201.