论文标题

DynamiceArthnet:每日多光谱卫星数据集用于语义变化分段

DynamicEarthNet: Daily Multi-Spectral Satellite Dataset for Semantic Change Segmentation

论文作者

Toker, Aysim, Kondmann, Lukas, Weber, Mark, Eisenberger, Marvin, Camero, Andrés, Hu, Jingliang, Hoderlein, Ariadna Pregel, Şenaras, Çağlar, Davis, Timothy, Cremers, Daniel, Marchisio, Giovanni, Zhu, Xiao Xiang, Leal-Taixé, Laura

论文摘要

地球观察是监测特定感兴趣领域土地使用进化的基本工具。在这种情况下,观察和精确定义变化需要时间序列数据和像素的分割。为此,我们提出了DynamiceArthnet数据集,该数据集由每日的,多光谱的卫星观测值组成,这些卫星观测值是通过Planet Labs的图像分布在全球范围内的75个选定领域。这些观察结果与7个土地使用和土地覆盖(LULC)类别的像素的每月语义分段标签配对。 DynamiceArthnet是第一个提供每日测量和高质量标签的独特组合的数据集。在我们的实验中,我们比较了几个已建立的基准,它们要么将日常观察结果用作额外的培训数据(半监督学习),要么同时将多个观察结果(时空学习)作为未来研究的参考。最后,我们提出了一个新的评估度量标准SC,以解决与时间序列语义变化细分相关的具体挑战。数据可在以下网址获得:https://mediatum.ub.tum.de/1650201。

Earth observation is a fundamental tool for monitoring the evolution of land use in specific areas of interest. Observing and precisely defining change, in this context, requires both time-series data and pixel-wise segmentations. To that end, we propose the DynamicEarthNet dataset that consists of daily, multi-spectral satellite observations of 75 selected areas of interest distributed over the globe with imagery from Planet Labs. These observations are paired with pixel-wise monthly semantic segmentation labels of 7 land use and land cover (LULC) classes. DynamicEarthNet is the first dataset that provides this unique combination of daily measurements and high-quality labels. In our experiments, we compare several established baselines that either utilize the daily observations as additional training data (semi-supervised learning) or multiple observations at once (spatio-temporal learning) as a point of reference for future research. Finally, we propose a new evaluation metric SCS that addresses the specific challenges associated with time-series semantic change segmentation. The data is available at: https://mediatum.ub.tum.de/1650201.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源