论文标题
指定纯二分状态的非局部性以及双方非本地性和纠缠措施之间的分析关系
Specifying nonlocality of a pure bipartite state and analytical relations between measures for bipartite nonlocality and entanglement
论文作者
论文摘要
对于多方量子状态,对所有贝尔的不平等的最大侵犯构成了其非局部性的衡量标准[Loubenets,J。Math。物理。 53,022201(2012)]。在本文中,对于纯粹的两分状态(可能是无限维度)对贝尔的不平等的最大侵犯,我们得出了一种新的上限,该界限是根据该状态的施密特系数表示的。这种新的上限也使我们还可以通过两分部分量子状态(纯或混合)指定对贝尔不平等的一般分析关系,并将这种状态的这种纠缠措施视为“负性”和“同意”。据我们所知,文献中没有任何一般分析性关系在两分性非局部性和纠缠之间的任何一般性关系,对于一般的两分国家来说,特别是这种关系对于纠缠认证和量化场景很重要。例如,我们将新结果应用于在鉴于其实验实现的文献中,在文献中深入讨论了二分子相干状态的非局部性的上限。
For a multipartite quantum state, the maximal violation of all Bell inequalities constitutes a measure of its nonlocality [Loubenets, J. Math. Phys. 53, 022201 (2012)]. In the present article, for the maximal violation of Bell inequalities by a pure bipartite state, possibly infinite-dimensional, we derive a new upper bound expressed in terms of the Schmidt coefficients of this state. This new upper bound allows us also to specify general analytical relations between the maximal violation of Bell inequalities by a bipartite quantum state, pure or mixed, and such entanglement measures for this state as "negativity" and "concurrence". To our knowledge, no any general analytical relations between measures for bipartite nonlocality and entanglement have been reported in the literature though, for a general bipartite state, specifically such relations are important for the entanglement certification and quantification scenarios. As an example, we apply our new results to finding upper bounds on nonlocality of bipartite coherent states intensively discussed last years in the literature in view of their experimental implementations.