论文标题

量子光学介绍

Introduction to Quantum Optics

论文作者

Navarrete-Benlloch, Carlos

论文摘要

储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。

These are the lecture notes for a course that I am teaching at Zhiyuan College of Shanghai Jiao Tong University (available at https://www.youtube.com/derekkorg), though the first draft was created for a previous course I taught at the University of Erlangen-Nuremberg in Germany. It has been designed for students who have only had basic training on quantum mechanics, and hence, the course is suited for people at all levels. The notes are a work in progress, meaning that some proofs and many figures are still missing. However, I've tried my best to write everything in such a way that a reader can follow naturally all arguments and derivations even with these missing bits. Quantum optics treats the interaction between light and matter. We may think of light as the optical part of the electromagnetic spectrum, and matter as atoms. However, modern quantum optics covers a wild variety of systems, including superconducting circuits, confined electrons, excitons in semiconductors, defects in solid state, or the center-of-mass motion of micro-, meso-, and macroscopic systems. Moreover, quantum optics is at the heart of the field of quantum information. The ideas and experiments developed in quantum optics have also allowed us to take a fresh look at many-body problems and even high-energy physics. In addition, quantum optics holds the promise of testing foundational problems in quantum mechanics as well as physics beyond the standard model in table-sized experiments. Quantum optics is therefore a topic that no future researcher in quantum physics should miss.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源