论文标题

灵巧的模仿变得容易:一种基于学习的框架,用于有效的灵巧操纵

Dexterous Imitation Made Easy: A Learning-Based Framework for Efficient Dexterous Manipulation

论文作者

Arunachalam, Sridhar Pandian, Silwal, Sneha, Evans, Ben, Pinto, Lerrel

论文摘要

在机器人技术中,优化灵巧操作的行为一直是一个长期的挑战,从基于模型的控制到无模型的强化学习的各种方法先前已经在文献中探索过。学习复杂的操纵策略的最强大技术之一也许是模仿学习。但是,从灵巧的操纵中收集和学习是非常具有挑战性的。与多手指控制有关的复杂的高维作用空间通常会导致基于学习的方法的样本效率差。在这项工作中,我们提出“灵巧的模仿变得容易”(一角钱)一种新的模仿学习框架,用于灵巧操纵。一毛钱只需要一个RGB摄像头来观察人类操作员并对我们的机器人手进行录音。一旦收集了示范,角钱将采用标准的模仿学习方法来培训灵活的操纵政策。在模拟和真实的机器人基准上,我们都证明一角钱可用于解决复杂的,手持操作的任务,例如用Allegro Hands使用“翻转”,“旋转”和“旋转”对象。我们的框架以及预收取的演示均可在https://nyu-robot-learning.github.io/dime上公开获得。

Optimizing behaviors for dexterous manipulation has been a longstanding challenge in robotics, with a variety of methods from model-based control to model-free reinforcement learning having been previously explored in literature. Perhaps one of the most powerful techniques to learn complex manipulation strategies is imitation learning. However, collecting and learning from demonstrations in dexterous manipulation is quite challenging. The complex, high-dimensional action-space involved with multi-finger control often leads to poor sample efficiency of learning-based methods. In this work, we propose 'Dexterous Imitation Made Easy' (DIME) a new imitation learning framework for dexterous manipulation. DIME only requires a single RGB camera to observe a human operator and teleoperate our robotic hand. Once demonstrations are collected, DIME employs standard imitation learning methods to train dexterous manipulation policies. On both simulation and real robot benchmarks we demonstrate that DIME can be used to solve complex, in-hand manipulation tasks such as 'flipping', 'spinning', and 'rotating' objects with the Allegro hand. Our framework along with pre-collected demonstrations is publicly available at https://nyu-robot-learning.github.io/dime.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源