论文标题

$ \ text {ads} _3 $上的字符串相关器:分析结构和双CFT

String correlators on $\text{AdS}_3$: Analytic structure and dual CFT

论文作者

Dei, Andrea, Eberhardt, Lorenz

论文摘要

我们继续研究欧几里得$ \ text {ads} _3 $的字符串相关器,并带有纯NS-NS Flux。世界表和时空相关器具有丰富的分析结构,我们可以完全分析0属0四点函数。我们表明,相关器在其奇异性附近表现出一种简单的行为。时空相关器是$ \ mathrm {sl}(2,\ mathbb {r})$ - Spins中的杂种功能,其极点结构被证明与对二$ \ text {cft} _2 _2 $的最新建议的预测相一致。此外,我们还准确地计算了某些极点的时空相关器的残基,并再次找到了与双$ \ text {cft} _2 $的建议完美匹配,从而检查了某些非平凡的四点功能的二元性。我们的计算以$ \ mathrm {ads} _3 \ times \ mathrm {s}^3 \ times \ times \ mathbb {t}^4 $的无张力限制大大简化。本文是一系列文章中的第三篇文章。

We continue our study of string correlators on Euclidean $\text{AdS}_3$ with pure NS-NS flux. The worldsheet and spacetime correlators have a rich analytic structure, which we analyse completely for genus 0 four-point functions. We show that correlators exhibit a simple behaviour near their singularities. The spacetime correlators are meromorphic functions in the $\mathrm{SL}(2,\mathbb{R})$-spins, whose pole structure is shown to agree with the prediction of a recent proposal for the dual $\text{CFT}_2$. Moreover, we also compute the residues of the spacetime correlators for some of the poles exactly and find again a perfect match with the proposal for the dual $\text{CFT}_2$, thereby checking the duality for some non-trivial four-point functions exactly. Our computations simplify drastically in the tensionless limit of $\mathrm{AdS}_3 \times \mathrm{S}^3 \times \mathbb{T}^4$ where the behaviour near the poles gives in fact the exact answer. This paper is the third in a series with several installments.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源