论文标题
三角形晶格上各向异性$ s = 1 $量子磁铁的相图和激发
Phase diagrams and excitations of anisotropic $S=1$ quantum magnets on the triangular lattice
论文作者
论文摘要
$ s = 1 $ birinear-biquadratic heisenberg交换模型先前已显示出具有单离子各向异性的晶格,已被证明可容纳许多异国情调的磁性和列出订单[Moreno-Cardoner $ \ textit $ \ textit {et al。} $,物理。 Rev. B $ \ TextBf {90} $,144409(2014)],包括一个广泛的“ SuperSolid”订单的区域。在这项工作中,我们通过XXZ各向异性在交换相互作用中修改模型。调谐到确切可解决的$ s = 1 $广义的ising-/blume-capel-type型号的限制提供了一个控制限制的限制,可在有限横向交换处访问阶段。值得注意的是,我们在相图中发现了一个额外的宏观变性区域,并在扰动理论下研究了其命运。我们进一步将相图映射为XXZ各向异性参数的函数,双线性和生物段相互作用的比例和单离子各向异性的比例,并使用系统构建的线性味道波 - 在各个相中对总排序矩进行校正。我们还提出了各种状态的线性风味波谱,发现三个公共的能源最低的频带(即,使用$ s^z = \ pm1,0 $)ising/blume-capel态,通过强交换各向异性的稳定,是通过强大的固定方式来稳定的,可以通过稳定地进行磁性稳定的效果,这是非常平坦的。
The $S=1$ bilinear-biquadratic Heisenberg exchange model on the triangular lattice with a single-ion anisotropy has previously been shown to host a number of exotic magnetic and nematic orders [Moreno-Cardoner $\textit{et al.}$, Phys. Rev. B $\textbf{90}$, 144409 (2014)], including an extensive region of "supersolid" order. In this work, we amend the model by an XXZ anisotropy in the exchange interactions. Tuning to the limit of an exactly solvable $S=1$ generalized Ising-/Blume-Capel-type model provides a controlled limit to access phases at finite transverse exchange. Notably, we find an additional macroscopically degenerate region in the phase diagram and study its fate under perturbation theory. We further map out phase diagrams as a function of the XXZ anisotropy parameter, ratio of bilinear and biquadratic interactions and single-ion anisotropy, and compute corrections to the total ordered moment in various phases using systematically constructed linear flavor-wave theory. We also present linear flavor-wave spectra of various states, finding that the lowest-energy band in three-sublattice generalized (i.e. with $S^z=\pm1,0$) Ising/Blume-Capel states, stabilized by strong exchange anisotropies, is remarkably flat, opening up the way to flat-band engineering of magnetic excitation via stabilizing non-trivial Ising-ordered ground states.