论文标题
高性能变压器跟踪
High-Performance Transformer Tracking
论文作者
论文摘要
相关性在轨道领域中起着至关重要的作用,尤其是在最近受欢迎的基于暹罗的跟踪器中。相关操作是一种简单的融合方法,它考虑了模板和搜索区域之间的相似性。但是,相关操作是一个本地线性匹配过程,失去语义信息并容易落入本地最佳距离,这可能是设计高智能跟踪算法的瓶颈。在这项工作中,为了确定是否存在更好的特征融合方法,而相关性是由变压器启发的新型基于注意力的特征融合网络。该网络有效地结合了模板和搜索区域特征,并使用注意力。具体而言,提出的方法包括基于自我注意事项的自我秘密增强模块和基于跨注意的交叉功能增强模块。首先,我们提出了一种基于类似暹罗的特征提取主链,设计的基于注意力的融合机制以及分类和回归头的变压器跟踪(名为Transt)方法。基于Transt基线,我们进一步设计一个分割分支以生成精确的掩码。最后,我们通过使用多模板方案和名为Transt-M的IOU预测头扩展Transt,提出了更强大的Transt版本。实验表明,我们的Transt和Transt-M方法在七个流行的数据集上实现了有希望的结果。代码和型号可在https://github.com/chenxin-dlut/transt-m上找到。
Correlation has a critical role in the tracking field, especially in recent popular Siamese-based trackers. The correlation operation is a simple fusion method that considers the similarity between the template and the search region. However, the correlation operation is a local linear matching process, losing semantic information and easily falling into a local optimum, which may be the bottleneck in designing high-accuracy tracking algorithms. In this work, to determine whether a better feature fusion method exists than correlation, a novel attention-based feature fusion network, inspired by the transformer, is presented. This network effectively combines the template and search region features using attention. Specifically, the proposed method includes an ego-context augment module based on self-attention and a cross-feature augment module based on cross-attention. First, we present a transformer tracking (named TransT) method based on the Siamese-like feature extraction backbone, the designed attention-based fusion mechanism, and the classification and regression head. Based on the TransT baseline, we further design a segmentation branch to generate an accurate mask. Finally, we propose a stronger version of TransT by extending TransT with a multi-template scheme and an IoU prediction head, named TransT-M. Experiments show that our TransT and TransT-M methods achieve promising results on seven popular datasets. Code and models are available at https://github.com/chenxin-dlut/TransT-M.