论文标题
在神经机器翻译中建模目标侧形态:策略的比较
Modeling Target-Side Morphology in Neural Machine Translation: A Comparison of Strategies
论文作者
论文摘要
形态上丰富的语言在机器翻译上构成困难。依靠平行训练数据(例如最先进的神经系统)依赖统计学习的机器翻译引擎面临挑战,尤其是在输出语言方面丰富的形态。数据驱动的机器翻译中丰富的目标侧形态的主要挑战包括:(1)大量不同的单词表面形式需要更大的词汇,因此需要数据稀疏性。 (2)训练语料库中通常不会出现某些不频繁的术语形式,这使得封闭的唱机系统无法生成这些未观察到的变体。 (3)语言一致性要求该系统在输出句子中正确匹配输出句子中的单词形式之间的语法类别,这是在目标侧形态句法良好的形态良好的良好性和相对于输入方面的语义是否足够。 在本文中,我们重新调查了两种目标端语言处理技术:一种诱饵标签策略和一种语言知情的单词分割策略。我们的实验是在三个不同幅度的三个训练语料库条件下进行的英语 - 德语翻译任务。我们发现,在翻译内域时,更强的变压器基线比浅层编码器模型的改进空间更少。但是,我们发现,当将同一系统应用于室外输入文本时,目标端形态的语言建模确实使变压器模型受益。我们还成功地将我们的英语方法应用于捷克翻译。
Morphologically rich languages pose difficulties to machine translation. Machine translation engines that rely on statistical learning from parallel training data, such as state-of-the-art neural systems, face challenges especially with rich morphology on the output language side. Key challenges of rich target-side morphology in data-driven machine translation include: (1) A large amount of differently inflected word surface forms entails a larger vocabulary and thus data sparsity. (2) Some inflected forms of infrequent terms typically do not appear in the training corpus, which makes closed-vocabulary systems unable to generate these unobserved variants. (3) Linguistic agreement requires the system to correctly match the grammatical categories between inflected word forms in the output sentence, both in terms of target-side morpho-syntactic wellformedness and semantic adequacy with respect to the input. In this paper, we re-investigate two target-side linguistic processing techniques: a lemma-tag strategy and a linguistically informed word segmentation strategy. Our experiments are conducted on a English-German translation task under three training corpus conditions of different magnitudes. We find that a stronger Transformer baseline leaves less room for improvement than a shallow-RNN encoder-decoder model when translating in-domain. However, we find that linguistic modeling of target-side morphology does benefit the Transformer model when the same system is applied to out-of-domain input text. We also successfully apply our approach to English to Czech translation.