论文标题
实心:直接B-REP合成的自回旋模型
SolidGen: An Autoregressive Model for Direct B-rep Synthesis
论文作者
论文摘要
边界表示(B-REP)格式是计算机辅助设计(CAD)中的脱离分子形状表示形式,以建模实体和床单对象。生成CAD模型的最新方法专注于学习素描和伸出的建模序列,这些序列是由固体建模内核在后过程中执行的,以恢复B-REP。在本文中,我们提出了一种新方法,该方法可以通过CAD建模序列数据从需要监督的情况下学习和合成B-REP。我们的方法实心是一种自回归神经网络,它通过使用基于变压器和指针神经网络的顶点,边缘和面直接对B-REP进行建模。实现这一目标的关键是我们的索引边界表示形式,它在定义明确的层次结构中引用B-Rep顶点,边缘和面,以捕获适合与机器学习一起使用的几何和拓扑关系。由于其B-REP分布的概率建模,因此可以在上下文中轻松地在上下文上进行固体调节。我们通过人类受试者进行定性,定量和知觉评估来证明固体可以产生高质量,现实的CAD模型。
The Boundary representation (B-rep) format is the de-facto shape representation in computer-aided design (CAD) to model solid and sheet objects. Recent approaches to generating CAD models have focused on learning sketch-and-extrude modeling sequences that are executed by a solid modeling kernel in postprocess to recover a B-rep. In this paper we present a new approach that enables learning from and synthesizing B-reps without the need for supervision through CAD modeling sequence data. Our method SolidGen, is an autoregressive neural network that models the B-rep directly by predicting the vertices, edges, and faces using Transformer-based and pointer neural networks. Key to achieving this is our Indexed Boundary Representation that references B-rep vertices, edges and faces in a well-defined hierarchy to capture the geometric and topological relations suitable for use with machine learning. SolidGen can be easily conditioned on contexts e.g., class labels, images, and voxels thanks to its probabilistic modeling of the B-rep distribution. We demonstrate qualitatively, quantitatively, and through perceptual evaluation by human subjects that SolidGen can produce high quality, realistic CAD models.