论文标题

同源循环类别的临界值的上限

Upper bounds for the critical values of homology classes of loops

论文作者

Rademacher, Hans-Bert

论文摘要

在此简短的说明中,我们讨论了同源类别的临界值的上限,在带有riemannian或Finsler阳性RICCI曲率的歧管的基于和自由的循环空间中。特别是,因此,在简单连接的$ n $ dimensional corlold curvature $ \ textrm {ric} \ ge n-1 $上具有长度$ \ lenπ$。

In this short note we discuss upper bounds for the critical values of homology classes in the based and free loop space of manifolds carrying a Riemannian or Finsler metric of positive Ricci curvature. In particular it follows that a shortest closed geodesic on a simply-connected $n$-dimensional manifold of positive Ricci curvature $\textrm{Ric} \ge n-1$ has length $\le n π.$

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源