论文标题
Covexillary Schubert品种的共素化品种
Conormal Varieties of covexillary Schubert Varieties
论文作者
论文摘要
如果避免$ 3412 $,则置换称为Covexillary。我们将山毛矩阵舒伯特品种的开放式嵌入到格拉曼尼亚的舒伯特品种中。作为这种嵌入的应用,我们表明,Covexillary Schubert品种的特征周期是不可约的,并提供了Lascoux模型计算kazhdan-lusztig多项式置换的新证明。将上述嵌入与作者对格拉斯曼尼亚舒伯特品种的共性品种的早期工作相结合,我们开发了一个代数标准,以识别Covexillary Schubert和Matrix Schubert品种的共同品种作为各自的Cotangent cotangent套装的亚物种。
A permutation is called covexillary if it avoids the pattern $3412$. We construct an open embedding of a covexillary matrix Schubert variety into a Grassmannian Schubert variety. As applications of this embedding, we show that the characteristic cycles of covexillary Schubert varieties are irreducible, and provide a new proof of Lascoux's model computing Kazhdan-Lusztig polynomials of vexillary permutations. Combining the above embedding with earlier work of the author on the conormal varieties of Grassmannian Schubert varieties, we develop an algebraic criterion identifying the conormal varieties of covexillary Schubert and matrix Schubert varieties as subvarieties of the respective cotangent bundles.