论文标题
凯利双曲空间和音量熵刚度
The Cayley hyperbolic space and volume entropy rigidity
论文作者
论文摘要
令$ m $为riemannian歧管,尺寸更大或等于$ 3 $,它可以接受完整的有限体积的riemannian公制$ g_0 $ g_0 $ g_0 $ g_0 $在非compact类型的级别1对称空间。体积熵刚度定理断言,$ g_0 $ $降低了所有完整的有限体积的Riemannian Metric,以$ m $ $ m $ $ $ $ M $。当$ G_0 $与Cayley双曲线空间局部等距时,我们将在证明中修复差距。
Let $M$ be a Riemannian manifold with dimension greater or equal to $3$ which admits a complete, finite-volume Riemannian metric $g_0$ locally isometric to a rank-1 symmetric space of non-compact type. The volume entropy rigidity theorem asserts that $g_0$ minimizes a normalized volume growth entropy among all complete, finite-volume, Riemannian metric on $M$. We will repair a gap in the proof when $g_0$ is locally isometric to the Cayley hyperbolic space.