论文标题
部分可观测时空混沌系统的无模型预测
Black-box Selective Inference via Bootstrapping
论文作者
论文摘要
储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。
Conditional selective inference requires an exact characterization of the selection event, which is often unavailable except for a few examples like the lasso. This work addresses this challenge by introducing a generic approach to estimate the selection event, facilitating feasible inference conditioned on the selection event. The method proceeds by repeatedly generating bootstrap data and running the selection algorithm on the new datasets. Using the outputs of the selection algorithm, we can estimate the selection probability as a function of certain summary statistics. This leads to an estimate of the distribution of the data conditioned on the selection event, which forms the basis for conditional selective inference. We provide a theoretical guarantee assuming both asymptotic normality of relevant statistics and accurate estimation of the selection probability. The applicability of the proposed method is demonstrated through a variety of problems that lack exact characterizations of selection, where conditional selective inference was previously infeasible.