论文标题
通用的六角数
Universal sums of generalized heptagonal numbers
论文作者
论文摘要
在本文中,我们将整数的表示形式视为概括的七角形数字的总和,并以总和出现的每个七角形数的重复序列。特别是,我们研究了这种普遍的总和的分类,即代表每个积极整数的总和。我们证明了一个明确的有限结合,因此当给定总和代表给定界的正整数时,给定总和是通用的。
In this paper, we consider representations of integers as sums of generalized heptagonal numbers with a prescribed number of repeats of each heptagonal number appearing in the sum. In particular, we investigate the classification of such sums which are universal, i.e., those that represent every positive integer. We prove an explicit finite bound such that a given sum is universal if and only if it represents positive integer up to the given bound.