论文标题
基于能量的潜在变量模型的双层双层学习
Bi-level Doubly Variational Learning for Energy-based Latent Variable Models
论文作者
论文摘要
基于能量的潜在变量模型(EBLVM)比传统的基于能量的模型更具表现力。但是,其在视觉任务上的潜力受到基于最大似然估计的训练过程的限制,这需要从两个棘手的分布中进行采样。在本文中,我们提出了双层双层学习(BIDVL),该学习基于新的双层优化框架和两个可拖动的变分分布,以促进学习EBLVM。特别是,我们领导的一个脱钩的EBLVM,该EBLVM包括基于边缘的能量分布和在图像上学习深度EBLVS时处理困难的结构后部。通过在框架的较低级别中选择对称KL差异,可以获得用于视觉任务的紧凑型BIDVL。我们的模型在相关作品上实现了令人印象深刻的图像产生性能。它还证明了测试图像重建和分布外检测的重要能力。
Energy-based latent variable models (EBLVMs) are more expressive than conventional energy-based models. However, its potential on visual tasks are limited by its training process based on maximum likelihood estimate that requires sampling from two intractable distributions. In this paper, we propose Bi-level doubly variational learning (BiDVL), which is based on a new bi-level optimization framework and two tractable variational distributions to facilitate learning EBLVMs. Particularly, we lead a decoupled EBLVM consisting of a marginal energy-based distribution and a structural posterior to handle the difficulties when learning deep EBLVMs on images. By choosing a symmetric KL divergence in the lower level of our framework, a compact BiDVL for visual tasks can be obtained. Our model achieves impressive image generation performance over related works. It also demonstrates the significant capacity of testing image reconstruction and out-of-distribution detection.