论文标题
一种动态空间滤波方法,以减轻校准低成本传感器空气污染数据中低估偏差的低估偏差
A dynamic spatial filtering approach to mitigate underestimation bias in field calibrated low-cost sensor air-pollution data
论文作者
论文摘要
低成本的空气污染传感器,提供污染物浓度的超本地表征,在环境和公共卫生研究中变得越来越普遍。但是,低成本的空气污染数据可能是嘈杂的,存在环境条件的偏见,并且通常需要通过将低成本传感器与参考级仪器相交。我们从理论和经验上表明,使用共处数据的共同校准的常见程序系统地低估了高空气污染浓度,这对于从健康角度诊断至关重要。当前的校准实践通常也无法利用污染物浓度的空间相关性。我们提出了一种新型的空间滤波方法,以基于搭配的低成本网络的校准,该方法通过使用反回归来减轻低估问题。反向回归还允许使用条件高斯工艺通过第二阶段模型通过第二阶段模型进行空间相关性。我们的方法与网络中的一个或多个共处站点配合使用,并且具有动态性,并利用了最新可用参考数据的空间相关性。通过广泛的模拟,我们演示了空间滤波如何显着改善污染物浓度的估计,并以更高的精度测量峰值浓度。我们将方法应用于马里兰州巴尔的摩的低成本PM2.5网络的校准,并诊断了由于回归校准所遗漏的空气污染峰。
Low-cost air pollution sensors, offering hyper-local characterization of pollutant concentrations, are becoming increasingly prevalent in environmental and public health research. However, low-cost air pollution data can be noisy, biased by environmental conditions, and usually need to be field-calibrated by collocating low-cost sensors with reference-grade instruments. We show, theoretically and empirically, that the common procedure of regression-based calibration using collocated data systematically underestimates high air pollution concentrations, which are critical to diagnose from a health perspective. Current calibration practices also often fail to utilize the spatial correlation in pollutant concentrations. We propose a novel spatial filtering approach to collocation-based calibration of low-cost networks that mitigates the underestimation issue by using an inverse regression. The inverse-regression also allows for incorporating spatial correlations by a second-stage model for the true pollutant concentrations using a conditional Gaussian Process. Our approach works with one or more collocated sites in the network and is dynamic, leveraging spatial correlation with the latest available reference data. Through extensive simulations, we demonstrate how the spatial filtering substantially improves estimation of pollutant concentrations, and measures peak concentrations with greater accuracy. We apply the methodology for calibration of a low-cost PM2.5 network in Baltimore, Maryland, and diagnose air pollution peaks that are missed by the regression-calibration.