论文标题
还原群体方案部分的中心化
Centralizers of sections of a reductive group scheme
论文作者
论文摘要
本文证明了对一般基础方案的还原群体方案部分中心化的许多平坦性结果。为此,我们建立了约旦分解的相对版本。利用我们的结果,我们在良好特征的基础上获得了简单连接的半神经组方案的通用中心器的规范扁平分层。我们还研究了一般基础上的单位和尼尔替那里部分的中心化和共轭类别的结构。
This paper proves a number of flatness results for centralizers of sections of a reductive group scheme over a general base scheme. To this end, we establish relative versions of the Jordan decomposition. Using our results, we obtain a canonical flattening stratification for the universal centralizer of a simply connected semisimple group scheme over a base of good characteristic. We also investigate the structure of centralizers and conjugacy classes of unipotent and nilpotent sections over general bases.