论文标题

簇光环II的动态建模会产生什么。与随机森林一起研究动态状态指标

What to expect from dynamical modelling of cluster haloes II. Investigating dynamical state indicators with Random Forest

论文作者

Li, Qingyang, Han, Jiaxin, Wang, Wenting, Cui, Weiguang, De Luca, Federico, Yang, Xiaohu, Zhou, Yanrui, Shi, Rui

论文摘要

我们根据随机森林(RF)机器学习方法研究了各种动力学特征在预测星系簇的动态状态(DS)方面的重要性。我们使用了来自三百个流体动力放大模拟项目的大量星系簇,并从原始数据以及来自光学,X射线和Sunyaev-Zel'dovich(SZ)通道中相应的模拟图中构造动力学特征。我们不依赖RF算法的基于杂质的特征的重要性,而是直接使用偏外(OOB)分数来评估单个特征和不同特征组合的重要性。在研究的所有功能中,我们发现病毒比率为$η$,是最重要的单一功能。与模拟地图构造的功能直接从模拟和3维中计算出的功能具有更多的DS信息。与基于X射线或SZ地图的功能相比,与质心位置相关的特征更为重要。尽管研究了大量的功能,但多达三种不同类型的三个特征的组合已经可以饱和预测的得分。最后,我们表明,最敏感的功能$η$与动态建模中著名的半质量偏见密切相关。如果没有在DS中进行选择,群集光环在$η$中具有不对称分布,对应于总体正质量偏置。我们的工作提供了定量参考,以选择最佳特征,以区分模拟和观测中的星系簇DS。

We investigate the importances of various dynamical features in predicting the dynamical state (DS) of galaxy clusters, based on the Random Forest (RF) machine learning approach. We use a large sample of galaxy clusters from the Three Hundred Project of hydrodynamical zoomed-in simulations, and construct dynamical features from the raw data as well as from the corresponding mock maps in the optical, X-ray, and Sunyaev-Zel'dovich (SZ) channels. Instead of relying on the impurity based feature importance of the RF algorithm, we directly use the out-of-bag (OOB) scores to evaluate the importances of individual features and different feature combinations. Among all the features studied, we find the virial ratio, $η$, to be the most important single feature. The features calculated directly from the simulations and in 3-dimensions carry more information on the DS than those constructed from the mock maps. Compared with the features based on X-ray or SZ maps, features related to the centroid positions are more important. Despite the large number of investigated features, a combination of up to three features of different types can already saturate the score of the prediction. Lastly, we show that the most sensitive feature $η$ is strongly correlated with the well-known half-mass bias in dynamical modelling. Without a selection in DS, cluster halos have an asymmetric distribution in $η$, corresponding to an overall positive half-mass bias. Our work provides a quantitative reference for selecting the best features to discriminate the DS of galaxy clusters in both simulations and observations.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源