论文标题
使用预测校正在线优化的连续系统的次优先安全控制
Suboptimal Safety-Critical Control for Continuous Systems Using Prediction-Correction Online Optimization
论文作者
论文摘要
本文使用更有效的在线算法通过随时间变化的优化研究了基于连续非线性控制仿射系统的控制屏障函数(CBF)。这个想法在于,当基于CBF的方法中所需的二次编程(QP)或其他凸优化算法不是可负担的计算时,可以更经济地获得替代性的次优可行解决方案。通过使用基于屏障的内部方法,受约束的CBF-QP问题通过通过两个连续下降的基于下降的算法跟踪的次优溶液转换为不受欢迎的解决方案。考虑到跟踪和利用系统信息的滞后效应,将预测方法添加到算法中,从而达到了指数级的收敛速率,使得时间变化的次优溶液。理论上分析了设计方法的收敛性和鲁棒性以及算法的安全标准。最后,通过对反击和避免障碍任务的模拟来说明了有效性。
This paper investigates the control barrier function (CBF) based safety-critical control for continuous nonlinear control affine systems using the more efficient online algorithms through time-varying optimization. The idea lies in that when quadratic programming (QP) or other convex optimization algorithms needed in the CBF-based method is not computation affordable, the alternative suboptimal feasible solutions can be obtained more economically. By using the barrier-based interior point method, the constrained CBF-QP problems are converted into the unconstrained ones with suboptimal solutions tracked by two continuous descent-based algorithms. Considering the lag effect of tracking and exploiting the system information, the prediction method is added to the algorithms which thereby achieves a exponential convergence rate to the time-varying suboptimal solutions. The convergence and robustness of the designed methods as well as the safety criteria of the algorithms are analyzed theoretically. In the end, the effectiveness is illustrated by simulations on the anti-swing and obstacle avoidance tasks.