论文标题

伪健康合成的病理和正常像素

Harmonizing Pathological and Normal Pixels for Pseudo-healthy Synthesis

论文作者

Zhang, Yunlong, Lin, Xin, Zhuang, Yihong, LiyanSun, Huang, Yue, Ding, Xinghao, Wang, Guisheng, Yang, Lin, Yu, Yizhou

论文摘要

从病理图像中综合的无病态图像合成对算法的开发和临床实践很有价值。近年来,基于生成对抗网络(GAN)的几种方法已在伪健康的合成中取得了令人鼓舞的结果。但是,GAN中的鉴别因子(即分类器)无法准确识别病变,并进一步缩放了令人钦佩的伪健康图像。为了解决这个问题,我们提出了一种新型的歧视器,即分段,以准确定位病变并提高伪健康图像的视觉质量。然后,我们将生成的图像应用于医疗图像增强中,并利用增强的结果来应对医学图像分割中存在的低对比度问题。此外,提出了一个可靠的度量标准,该指标是利用标签噪声的两个属性来测量合成图像的健康。关于BRAT的T2模式的综合实验表明,所提出的方法基本上优于最先进的方法。该方法比仅30 \%的培训数据的现有方法实现了更好的性能。该方法的有效性也证明了BRAT的LIT和T1模态。该研究的代码和预训练的模型可在https://github.com/au3c2/generator-versus-sementor上公开获得。

Synthesizing a subject-specific pathology-free image from a pathological image is valuable for algorithm development and clinical practice. In recent years, several approaches based on the Generative Adversarial Network (GAN) have achieved promising results in pseudo-healthy synthesis. However, the discriminator (i.e., a classifier) in the GAN cannot accurately identify lesions and further hampers from generating admirable pseudo-healthy images. To address this problem, we present a new type of discriminator, the segmentor, to accurately locate the lesions and improve the visual quality of pseudo-healthy images. Then, we apply the generated images into medical image enhancement and utilize the enhanced results to cope with the low contrast problem existing in medical image segmentation. Furthermore, a reliable metric is proposed by utilizing two attributes of label noise to measure the health of synthetic images. Comprehensive experiments on the T2 modality of BraTS demonstrate that the proposed method substantially outperforms the state-of-the-art methods. The method achieves better performance than the existing methods with only 30\% of the training data. The effectiveness of the proposed method is also demonstrated on the LiTS and the T1 modality of BraTS. The code and the pre-trained model of this study are publicly available at https://github.com/Au3C2/Generator-Versus-Segmentor.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源