论文标题
海森伯格集团的cotangent束的几何形状
Geometry of cotangent bundle of Heisenberg group
论文作者
论文摘要
在本文中,列出了左右不变的里曼尼亚指标的分类,直到自动形态群体的作用,对(2n+1)维二维的海森伯格组的cotangengent捆绑包进行了分类。同样,事实证明,该组上的复杂结构是独特的,并且描述了相应的伪卡勒指标,并证明是Ricci平坦的。众所周知,该代数承认中性签名的广告不变度量。在这里,证明了这种指标的独特性
In this paper the classification of left-invariant Riemannian metrics, up to the action of the automorphism group, on cotangent bundle of (2n+1)-dimensional Heisenberg group is presented. Also, it is proved that the complex structure on that group is unique and the corresponding pseudoKähler metrics are described and shown to be Ricci flat. It is well known that this algebra admits an ad-invariant metric of neutral signature. Here, the uniqueness of such metric is proved