论文标题
电极:用于原子模拟的电化学包
ELECTRODE: An electrochemistry package for atomistic simulations
论文作者
论文摘要
恒定电位方法(CPM)可以在分子动力学(MD)中对固液界面进行固定液体界面的计算有效模拟。它们已被成功地用于现实地对超级电池和电池中离子液体或盐中电解质的行为进行现实建模。 CPM通过根据施加的电势和(时间依赖的)局部电解质结构更新单个电极原子的电荷来模拟导电电极。在这里,我们提出了大规模原子/分子大规模平行模拟器(LAMMPS)的富特征CPM实现,称为电极,其中包括约束的电荷方法和Thermo-Potentiostat。电极封装还包含有限的场方法,对粒子粒子粒子网求解器的非周期边界条件进行多次校正,以及用于使用非理想金属作为电极的Thomas-Fermi模型。我们证明了该实现的功能,用于平行板电气双层电容器,为此,我们通过不同的实施方法研究了充电时间,并发现水与离子偶极子弛豫之间存在有趣的关系。为了证明一维校正对远距离静电的有效性,我们估计了两个同轴碳纳米管的真空电容,并将其与无结构的缸体进行了比较,为此存在分析表达式。总而言之,电极包装可以使用最先进的方法进行有效的电化学模拟,从而使一个模拟甚至可以模拟异质电极。此外,它允许更严格揭示电极曲率如何通过一维校正影响电容。
Constant potential methods (CPM) enable computationally efficient simulations of the solid-liquid interface at conducting electrodes in molecular dynamics (MD). They have been successfully used, for example, to realistically model the behavior of ionic liquids or water-in-salt electrolytes in supercapacitors and batteries. The CPM models conductive electrodes by updating charges of individual electrode atoms according to the applied electric potential and the (time-dependent) local electrolyte structure. Here we present a feature-rich CPM implementation, called ELECTRODE, for the Large-scale Atomic/Molecular Massively Parallel Simulator (LAMMPS), which includes a constrained charge method and a thermo-potentiostat. The ELECTRODE package also contains a finite-field approach, multiple corrections for non-periodic boundary conditions of the particle-particle particle-mesh solver, and a Thomas-Fermi model for using non-ideal metals as electrodes. We demonstrate the capabilities of this implementation for a parallel-plate electrical double-layer capacitor, for which we have investigated the charging times with the different implemented methods and found an interesting relationship between water and ionic dipole relaxations. To prove the validity of the one-dimensional correction for the long-range electrostatics, we estimated the vacuum capacitance of two co-axial carbon nanotubes and compared it to structureless cylinders, for which an analytical expression exists. In summary, the ELECTRODE package enables efficient electrochemical simulations using state-of-the-art methods, allowing one to simulate even heterogeneous electrodes. Moreover, it allows unveiling more rigorously how electrode curvature affects the capacitance with the one-dimensional correction.