论文标题
构建相对福卡亚类别
Constructing the relative Fukaya category
论文作者
论文摘要
在半呈阳性假设下,我们给出了Seidel的“相对福卡亚类别”的定义,以使其具有光滑的复杂投影变化。我们使用Cieliebak--Mohnke方法通过稳定除数来进行横向性。我们的构造的两个特征值得注意:我们相对于正常的交叉分裂,支持有效的分裂,但不需要足够的组成部分;并且我们的相对福卡亚类别在具有整数系数的多元功率序列的某个环上是线性的。
We give a definition of Seidel's `relative Fukaya category', for a smooth complex projective variety, under a semipositivity assumption. We use the Cieliebak--Mohnke approach to transversality via stabilizing divisors. Two features of our construction are noteworthy: that we work relative to a normal crossings divisor that supports an effective ample divisor but need not have ample components; and that our relative Fukaya category is linear over a certain ring of multivariate power series with integer coefficients.