论文标题
光学和X射线GRB基本平面作为宇宙距离指标
Optical and X-ray GRB Fundamental Planes as Cosmological Distance Indicators
论文作者
论文摘要
伽马射线爆发(GRB)可以用作标准化蜡烛,将距离梯子延伸到超级新星IA型(sne ia,$ z = 2.26 $)之外。我们使用3D基本平面关系(Dainotti关系)在X射线平台发射的剩余末端时间之间进行标准化,其相应的发光度和峰值及时亮度。结合SNE IA和GRB,我们约束$ω_ {\ text {m}} = 0.299 \ pm 0.009 $,假设有和不校正GRB的flat $λ$ CDM宇宙学,以进行选择偏见和红移Evolution。使用3D光学的Dainotti相关性,我们发现该样本在确定$ω_ {\ text {m}} $作为X射线样本时同样有效。我们修剪了GRB样品以实现更紧密的平面以模拟其他GRB。我们确定需要多少个GRB作为独立探针,以在$ω_ {\ text {m}} $上获得可比较的精度。我们在2011年和2014年使用SNE IA得出的相同误差测量,分别考虑了142和284个模拟的光学GRB,考虑到变量减半的错误栏。这些误差限制将分别在2038年和2047年达到。与当前样品相比,使用双重样品(通过未来的机器学习方法获得,允许灯曲线重建和GRB红旋转的估计值),而误差键减半,我们将分别与2011年和2014年的SNE IA达到相同的精度。如果我们考虑当前的SNE精度,则将在2054年使用390个光学GRB达到。
Gamma-Ray Bursts (GRBs), can be employed as standardized candles, extending the distance ladder beyond Supernovae Type Ia (SNe Ia, $z=2.26$). We standardize GRBs using the 3D fundamental plane relation (the Dainotti relation) among the rest-frame end time of the X-ray plateau emission, its corresponding luminosity, and the peak prompt luminosity. Combining SNe Ia and GRBs, we constrain $Ω_{\text{M}}= 0.299 \pm 0.009$ assuming a flat $Λ$CDM cosmology with and without correcting GRBs for selection biases and redshift evolution. Using a 3D optical Dainotti correlation, we find this sample is as efficacious in the determination of $Ω_{\text{M}}$ as the X-ray sample. We trimmed our GRB samples to achieve tighter planes to simulate additional GRBs. We determined how many GRBs are needed as standalone probes to achieve a comparable precision on $Ω_{\text{M}}$ to the one obtained by SNe Ia only. We reach the same error measurements derived using SNe Ia in 2011 and 2014 with 142 and 284 simulated optical GRBs, respectively, considering the errorbars on the variables halved. These error limits will be reached in 2038 and in 2047, respectively. Using a doubled sample (obtained by future machine learning approaches allowing a lightcurve reconstruction and the estimates of GRB redhifts when z is unknown) compared to the current sample, with errorbars halved we will reach the same precision as SNe Ia in 2011 and 2014, now and in 2026, respectively. If we consider the current SNe precision, this will be reached with 390 optical GRBs by 2054.