论文标题

野火风险预测:可优化的火灾危险指数

Wildfire risk forecast: An optimizable fire danger index

论文作者

Rodrigues, Eduardo, Zadrozny, Bianca, Watson, Campbell

论文摘要

野火事件在世界许多地方造成了严重的损失,预计随着气候变化的增加。多年来,已经开发了许多技术来早期确定火灾事件,并一旦起火开始模拟火灾行为。另一个特别有用的技术是火灾风险指数,该指数利用天气强迫对火灾风险进行高级预测。例如,可以使用火灾风险指数的预测来分配高风险的资源。多年来,这些指数是作为经验模型开发的,这些模型具有在实验实验和现场测试中估计的参数。但是,这些参数可能不太适合所有使用这些模型的地方。在本文中,我们提出了一个新的索引(NFDRS IC)作为一个可区分的功能,可以通过梯度下降来优化其内部参数。我们利用现有的机器学习框架(Pytorch)来构建我们的模型。该方法具有两个好处:(1)使用实际观察到的火灾事件可以改进每个区域的NFDRS IC参数,并且(2)内部变量对于专家的解释而不是像传统神经网络中的毫无意义的隐藏层保持完整。在本文中,我们通过为美国和欧洲的地点进行实际火灾事件评估我们的策略。

Wildfire events have caused severe losses in many places around the world and are expected to increase with climate change. Throughout the years many technologies have been developed to identify fire events early on and to simulate fire behavior once they have started. Another particularly helpful technology is fire risk indices, which use weather forcing to make advanced predictions of the risk of fire. Predictions of fire risk indices can be used, for instance, to allocate resources in places with high risk. These indices have been developed over the years as empirical models with parameters that were estimated in lab experiments and field tests. These parameters, however, may not fit well all places where these models are used. In this paper we propose a novel implementation of one index (NFDRS IC) as a differentiable function in which one can optimize its internal parameters via gradient descent. We leverage existing machine learning frameworks (PyTorch) to construct our model. This approach has two benefits: (1) the NFDRS IC parameters can be improved for each region using actual observed fire events, and (2) the internal variables remain intact for interpretations by specialists instead of meaningless hidden layers as in traditional neural networks. In this paper we evaluate our strategy with actual fire events for locations in the USA and Europe.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源