论文标题

基于一致性正规化的深层多项式混乱神经网络方法用于可靠性分析

Consistency regularization-based Deep Polynomial Chaos Neural Network Method for Reliability Analysis

论文作者

Zheng, Xiaohu, Yao, Wen, Zhang, Yunyang, Zhang, Xiaoya

论文摘要

多项式混乱扩展(PCE)是一种强大的基于替代模型的可靠性分析方法。通常,通常需要具有较高扩展顺序的PCE模型来获得某些复杂的非线性随机系统的精确替代模型。但是,高阶PCE增加了解决扩展系数所需的标记数据数量。为了减轻这个问题,本文提出了一种基于一致性的深层多项式混乱神经网络(DEEP PCNN)方法,包括低阶自适应PCE模型(辅助模型)和高阶多项式混乱神经网络(主要模型)。主要模型的扩展系数被参数化为多项式混乱神经网络的可学习权重,从而实现了扩展系数的迭代学习,以获得更准确的高阶PCE模型。辅助模型使用建议的一致性正则损失函数来帮助训练主模型。基于一致性正规化的深度PCNN方法可以显着减少构建高阶PCE模型的标记数据数量,而不会通过使用很少的标记数据和丰富的未标记数据而丢失准确性。一个数值示例验证了基于一致性的深度PCNN方法的有效性,然后应用此方法来分析两个航空航天工程系统的可靠性。

Polynomial chaos expansion (PCE) is a powerful surrogate model-based reliability analysis method. Generally, a PCE model with a higher expansion order is usually required to obtain an accurate surrogate model for some complex non-linear stochastic systems. However, the high-order PCE increases the number of labeled data required for solving the expansion coefficients. To alleviate this problem, this paper proposes a consistency regularization-based deep polynomial chaos neural network (Deep PCNN) method, including the low-order adaptive PCE model (the auxiliary model) and the high-order polynomial chaos neural network (the main model). The expansion coefficients of the main model are parameterized into the learnable weights of the polynomial chaos neural network, realizing iterative learning of expansion coefficients to obtain more accurate high-order PCE models. The auxiliary model uses a proposed consistency regularization loss function to assist in training the main model. The consistency regularization-based Deep PCNN method can significantly reduce the number of labeled data in constructing a high-order PCE model without losing accuracy by using few labeled data and abundant unlabeled data. A numerical example validates the effectiveness of the consistency regularization-based Deep PCNN method, and then this method is applied to analyze the reliability of two aerospace engineering systems.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源