论文标题
准周期喷气机保持的太阳丝的衰减纵向振荡
Decayless longitudinal oscillations of a solar filament maintained by quasi-periodic jets
论文作者
论文摘要
上下文:作为一种普遍存在的现象,通常在1--4个时期内衰减的大振幅纵向灯丝振荡。最近,我们观察到了电晕中这种振荡的腐败情况。目的:我们试图了解保持细丝腐烂振荡的物理过程。方法:收集多波长成像观测和磁图以研究丝振荡的动力学及其相关现象。为了解释衰减的振荡,我们还使用MPI-AMRVAC代码进行了一维水动力数值模拟。结果:在观察中,灯丝在爆发前将近4小时,在$ 36.4 \ pm $ 36.4 \ pm的周期内衰减。在振荡期间,从细丝附近的磁取消部位散发出四个准周期性飞机。相邻喷气机之间的时间间隔为$ \ sim 68.9 \ pm 1.0 $ min。受观察结果约束的数值模拟再现了无腐烂的纵向振荡。但是,令人惊讶的是,发现衰减的振荡周期与摆模型不一致。结论:我们提出,灯丝的无衰减纵向振荡是由准周期喷头维持的,这是通过流体动力模拟验证的。更重要的是,发现在准周期喷气机的驱动时,灯丝纵向振荡的时期也取决于喷气机的驾驶期,而不仅仅是摆钟。通过模拟中的参数调查,我们得出了一个公式,通过该公式可以使用观察到的衰减丝振荡的时期和喷气机的驾驶时间来得出摆振荡周期。
Context: As a ubiquitous phenomenon, large-amplitude longitudinal filament oscillations usually decay in 1--4 periods. Recently, we observed a decayless case of such oscillations in the corona. Aims: We try to understand the physical process that maintains the decayless oscillation of the filament. Methods: Multi-wavelength imaging observations and magnetograms are collected to study the dynamics of the filament oscillation and its associated phenomena. To explain the decayless oscillations, we also perform one-dimensional hydrodynamic numerical simulations using the MPI-AMRVAC code. Results: In observations, the filament oscillates decaylessly with a period of $36.4 \pm 0.3$ min for almost 4 hours before eruption. During oscillations, four quasi-periodic jets emanate from a magnetic cancellation site near the filament. The time interval between neighboring jets is $\sim 68.9 \pm 1.0$ min. Numerical simulations constrained by the observations reproduced the decayless longitudinal oscillations. However, it is surprising to find that the period of the decayless oscillations is not consistent with the pendulum model. Conclusions: We propose that the decayless longitudinal oscillations of the filament are maintained by quasi-periodic jets, which is verified by the hydrodynamic simulations. More importantly, it is found that, when driven by quasi-periodic jets, the period of the filament longitudinal oscillations depends also on the driving period of the jets, not simply the pendulum period. With a parameter survey in simulations, we derived a formula, by which one can derive the pendulum oscillation period using the observed period of decayless filament oscillations and the driving periods of jets.