论文标题

学习碰撞:推荐系统模型压缩具有博学的哈希功能

Learning to Collide: Recommendation System Model Compression with Learned Hash Functions

论文作者

Ghaemmaghami, Benjamin, Ozdal, Mustafa, Komuravelli, Rakesh, Korchev, Dmitriy, Mudigere, Dheevatsa, Nair, Krishnakumar, Naumov, Maxim

论文摘要

深度建议模型的关键特征是它们嵌入表的巨大内存要求。这些嵌入桌通常可以到达数百千兆字节,从而增加硬件要求和培训成本。减少模型大小的一种常见技术是将所有分类变量标识符(ID)放入较小的空间中。这减少了必须存储在嵌入表中的唯一表示的数量;从而降低了其大小。但是,这种方法引入了降低模型质量的语义上不同ID之间的碰撞。我们介绍了一种替代方法,学习的哈希功能,而是学习了一种新的映射功能,鼓励语义上相似的ID之间发生碰撞。我们从历史数据和嵌入访问模式中得出了这一学习的映射。我们在生产模型上尝试了这项技术,发现通过访问频率组合和学习的低维嵌入所告知的映射是最有效的。相对于哈希技巧和其他相关的压缩技术,我们证明了很小的改进。这是正在进行的工作,探讨了分类ID冲突对建议模型质量的影响以及如何控制这些冲突以提高模型性能。

A key characteristic of deep recommendation models is the immense memory requirements of their embedding tables. These embedding tables can often reach hundreds of gigabytes which increases hardware requirements and training cost. A common technique to reduce model size is to hash all of the categorical variable identifiers (ids) into a smaller space. This hashing reduces the number of unique representations that must be stored in the embedding table; thus decreasing its size. However, this approach introduces collisions between semantically dissimilar ids that degrade model quality. We introduce an alternative approach, Learned Hash Functions, which instead learns a new mapping function that encourages collisions between semantically similar ids. We derive this learned mapping from historical data and embedding access patterns. We experiment with this technique on a production model and find that a mapping informed by the combination of access frequency and a learned low dimension embedding is the most effective. We demonstrate a small improvement relative to the hashing trick and other collision related compression techniques. This is ongoing work that explores the impact of categorical id collisions on recommendation model quality and how those collisions may be controlled to improve model performance.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源