论文标题

生物医学应用的温度感知的整体3D DNN加速器

Temperature-Aware Monolithic 3D DNN Accelerators for Biomedical Applications

论文作者

Shukla, Prachi, Pavlidis, Vasilis F., Salman, Emre, Coskun, Ayse K.

论文摘要

在本文中,我们专注于温度感知的单片3D(MONO3D)深神经网络(DNN)推理,用于生物医学应用。我们开发了一个优化器,可在用户定义的性能和热约束下调整加速器的纵横比和足迹,并生成近乎最佳的配置。使用拟议的MONO3D优化器,我们证明了比性能优化加速器的生物医学应用的能源效率高达61%。

In this paper, we focus on temperature-aware Monolithic 3D (Mono3D) deep neural network (DNN) inference accelerators for biomedical applications. We develop an optimizer that tunes aspect ratios and footprint of the accelerator under user-defined performance and thermal constraints, and generates near-optimal configurations. Using the proposed Mono3D optimizer, we demonstrate up to 61% improvement in energy efficiency for biomedical applications over a performance-optimized accelerator.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源