论文标题

部分可观测时空混沌系统的无模型预测

Using Active Speaker Faces for Diarization in TV shows

论文作者

Sharma, Rahul, Narayanan, Shrikanth

论文摘要

储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。

Speaker diarization is one of the critical components of computational media intelligence as it enables a character-level analysis of story portrayals and media content understanding. Automated audio-based speaker diarization of entertainment media poses challenges due to the diverse acoustic conditions present in media content, be it background music, overlapping speakers, or sound effects. At the same time, speaking faces in the visual modality provide complementary information and not prone to the errors seen in the audio modality. In this paper, we address the problem of speaker diarization in TV shows using the active speaker faces. We perform face clustering on the active speaker faces and show superior speaker diarization performance compared to the state-of-the-art audio-based diarization methods. We additionally report a systematic analysis of the impact of active speaker face detection quality on the diarization performance. We also observe that a moderately well-performing active speaker system could outperform the audio-based diarization systems.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源