论文标题
纵向公平与审查制度
Longitudinal Fairness with Censorship
论文作者
论文摘要
人工智能公平方面的最新作品试图通过提出有限的优化程序来减轻歧视,以达到某些公平统计的奇偶校验。大多数人都假定类标签的可用性,这在许多现实世界中是不切实际的,例如精确医学,精算分析和累犯预测。在这里,我们考虑在纵向右审查的环境中公平性,在该环境中,事件的时间可能未知,导致了班级标签的审查和现有公平研究的不适用性。我们设计了适用的公平措施,提出了一种辩解算法,并提供了必要的理论构造,以弥合有或没有审查的这些重要和对社会敏感的任务的情况。我们对四个审查数据集的实验证实了我们方法的实用性。
Recent works in artificial intelligence fairness attempt to mitigate discrimination by proposing constrained optimization programs that achieve parity for some fairness statistic. Most assume availability of the class label, which is impractical in many real-world applications such as precision medicine, actuarial analysis and recidivism prediction. Here we consider fairness in longitudinal right-censored environments, where the time to event might be unknown, resulting in censorship of the class label and inapplicability of existing fairness studies. We devise applicable fairness measures, propose a debiasing algorithm, and provide necessary theoretical constructs to bridge fairness with and without censorship for these important and socially-sensitive tasks. Our experiments on four censored datasets confirm the utility of our approach.