论文标题

关于各种积分最小化的全球规律性:2D中的拆卸型问题以及对一般各向异性设置的扩展

On the global regularity for minimizers of variational integrals: splitting-type problems in 2D and extensions to the general anisotropic setting

论文作者

Bildhauer, Michael, Fuchs, Martin

论文摘要

我们主要讨论在有界Lipschitz域上拆卸型变量积分$ω\ subset \ Mathbb {r}^2 $上的超二次最小化问题,并通过合并适当的权重量的距离来实现了边界数据的距离,从而证明了梯度到边界的更高集成能。作为推论,根据函数$ {\ rm dist}(\ cdot,\ cdot,\ partialω)$量化了本地Hölder系数相对于某些改进的Hölder连续性。结果扩展到各向异性问题,而在自然生长和椭圆状条件下没有分裂结构。在这两种情况下

We mainly discuss superquadratic minimization problems for splitting-type variational integrals on a bounded Lipschitz domain $Ω\subset \mathbb{R}^2$ and prove higher integrability of the gradient up to the boundary by incorporating an appropriate weight-function measuring the distance of the solution to the boundary data. As a corollary, the local Hölder coefficient with respect to some improved Hölder continuity is quantified in terms of the function ${\rm dist}(\cdot,\partial Ω)$. The results are extended to anisotropic problems without splitting structure under natural growth and ellipticity conditions. In both cases we argue with variants of Caccioppoli's inequality involving small weights

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源