论文标题

感兴趣的区域以回归和分类多任务网络为重点MRI将MRI集中在合成CT翻译上

Region of Interest focused MRI to Synthetic CT Translation using Regression and Classification Multi-task Network

论文作者

Kaushik, Sandeep, Bylund, Mikael, Cozzini, Cristina, Shanbhag, Dattesh, Petit, Steven F, Wyatt, Jonathan J, Menzel, Marion I, Pirkl, Carolin, Mehta, Bhairav, Chauhan, Vikas, Chandrasekharan, Kesavadas, Jonsson, Joakim, Nyholm, Tufve, Wiesinger, Florian, Menze, Bjoern

论文摘要

在这项工作中,我们提出了一种从零回声时间(ZTE)MRI生成的合成CT(SCT)的方法,该MRI针对图像的结构和定量准确性,特别侧重于精确的骨密度值预测。我们提出了一个有利于图像中空间稀疏区域的损耗函数。我们利用多任务网络产生相关输出作为通过分类来定位感兴趣区域(ROI)的框架的能力,强调ROI内的值回归,并且仍然通过全局回归保留整体准确性。网络通过复合损失函数进行了优化,该函数结合了每个任务的专用损失。我们演示了以ROI为重点损失的多任务网络如何比网络的其他配置具有优势,以实现更高的性能精度。这与SCT相关,因为SCT无法准确估计骨骼的高hounsfield单位值可能会导致临床应用中的准确性受损。我们比较了在放射疗法治疗计划设置中比较拟议的SCT和实际CT的剂量计算图。

In this work, we present a method for synthetic CT (sCT) generation from zero-echo-time (ZTE) MRI aimed at structural and quantitative accuracies of the image, with a particular focus on the accurate bone density value prediction. We propose a loss function that favors a spatially sparse region in the image. We harness the ability of a multi-task network to produce correlated outputs as a framework to enable localisation of region of interest (RoI) via classification, emphasize regression of values within RoI and still retain the overall accuracy via global regression. The network is optimized by a composite loss function that combines a dedicated loss from each task. We demonstrate how the multi-task network with RoI focused loss offers an advantage over other configurations of the network to achieve higher accuracy of performance. This is relevant to sCT where failure to accurately estimate high Hounsfield Unit values of bone could lead to impaired accuracy in clinical applications. We compare the dose calculation maps from the proposed sCT and the real CT in a radiation therapy treatment planning setup.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源