论文标题
Segre-Macpherson课程的挂钩公式
Hook formulae from Segre-MacPherson classes
论文作者
论文摘要
储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。
Nakada's colored hook formula is a vast generalization of many important formulae in combinatorics, such as the classical hook length formula and the Peterson's formula for the number of reduced expressions of minuscule Weyl group elements. In this paper, we utilize cohomological properties of Segre-MacPherson classes of Schubert cells and varieties to prove a generalization of a cohomological version of Nakada's formula, in terms of smoothness properties of Schubert varieties. A key ingredient in the proof is the study of a decorated version of the Bruhat graph. Summing over weighted paths of this graph give the terms in the generalized Nakada's formula, and also provide algorithms to calculate structure constants of multiplications of Segre-MacPherson classes of Schubert cells. For simply laced Weyl groups, we also show the equality of `skew' and `straight' Nakada's formulae. This utilizes a criterion for smoothness in terms of excited diagrams of heaps of minuscule elements, which might be of independent interest.