论文标题
基于双波量量子点自旋式垂直腔表面发射激光器的时延时储层计算
Time-Delayed Reservoir Computing Based on Dual-Waveband Quantum-Dot Spin-Polarized Vertical Cavity Surface-Emitting Laser
论文作者
论文摘要
在这项工作中,我们介绍了有关延迟的储层计算方案的数值结果,其中其单个非线性节点是量子点旋转极化垂直腔表面发射激光器(QD S-VCSEL)。提出的光子神经形态方案利用了量子点材料中存在的多个能量状态的复杂时间动力学,并利用了两个离散波段和两个极化状态的发射,以提高计算效率。该体系结构使用的基准任务是在1550nm时传输50 km后,扭曲的25Gbaud PAM-4信号的均衡。结果证实,尽管由于带宽的限制,典型的地下发射量子点节点可提供有限的性能。通过利用双重排放,我们实现了比特率率提高了一百倍。这种性能提升可以为在高速苛刻的神经形态驱动的应用中渗透基于量子点的设备的道路。
In this work we present numerical results concerning a time-delayed reservoir computing scheme, where its single nonlinear node, is a Quantum-Dot spin polarized Vertical Cavity Surface-Emitting Laser (QD s-VCSEL). The proposed photonic neuromorphic scheme, exploits the complex temporal dynamics of multiple energy states present in quantum dot materials and uses emission from two discrete wavebands and two polarization states, so as to enhance computational efficiency. The benchmark task used for this architecture, is the equalization of a distorted 25Gbaud PAM-4 signal after 50Km of transmission at 1550nm. Results confirm that although typical ground-state emitting quantum-dot nodes offer limited performance, due to bandwidth limitations; by exploiting dual emission, we achieved a one-hundred-fold improvement in bit-error rate. This performance boost can pave the way for the infiltration of quantum-dot based devices in high-speed demanding neuromorphic driven applications.