论文标题

两阶段强大的优化与决策依赖性不确定性

Two-Stage Robust Optimization with Decision Dependent Uncertainty

论文作者

Zeng, Bo, Wang, Wei

论文摘要

依赖决策的不确定性(DDU)的类型在决策中构成了巨大的挑战,而现有方法不足以支持许多实际实践。在本文中,我们提出了一项系统的研究,以在两阶段强大的优化〜(RO)中应对这一挑战。我们的主要贡献包括三种复杂的列和约束生成方法,以精确计算基于DDU的两阶段RO。通过线性编程的核心概念的新应用,我们对其计算行为进行了严格的分析。有趣的是,就这些算法的迭代复杂性而言,基于DDU的两阶段RO并不比基于决策的独立不确定性(DIU)对应物更高。值得强调的是违反直觉的发现,即通过使用“深知识”将DIU转换为DDU设置,然后计算最终的基于DDU的配方可能会带来重大改进。确实,如本文所示,除了捕获现实世界中存在的实际依赖性外,DDU还是一种强大而灵活的工具,可以代表和利用分析属性或仅仅是域专业知识来实现​​强大的解决方案能力。因此,我们相信它将为解决基于DDU的大规模DIU或DDU RO打开新的方向。其他重要的结果包括两阶段RO的基本结构特性,一种处理混合整数追索权的近似方案,以及针对已发达算法的几种增强技术,以及一项有组织的数值研究,以帮助我们欣赏所有算法和增强技术的计算性能。

The type of decision dependent uncertainties (DDUs) imposes a great challenge in decision making, while existing methodologies are not sufficient to support many real practices. In this paper, we present a systematic study to handle this challenge in two-stage robust optimization~(RO). Our main contributions include three sophisticated variants of column-and-constraint generation method to exactly compute DDU-based two-stage RO. By a novel application of core concepts of linear programming, we provide rigorous analyses on their computational behaviors. Interestingly, in terms of the iteration complexity of those algorithms, DDU-based two-stage RO is not more demanding than its decision independent uncertainty (DIU) based counterpart. It is worth highlighting a counterintuitive discovery that converting a DIU set into a DDU set by making use of "deep knowledge" and then computing the resulting DDU-based formulation may lead to a significant improvement. Indeed, as shown in this paper, in addition to capturing the actual dependence existing in the real world, DDU is a powerful and flexible tool to represent and leverage analytical properties or simply domain expertise to achieve a strong solution capacity. So, we believe it will open a new direction to solve large-scale DIU- or DDU-based RO. Other important results include basic structural properties for two-stage RO, an approximation scheme to deal with mixed integer recourse, and a couple of enhancement techniques for the developed algorithms, as well as an organized numerical study to help us appreciate all algorithms and enhancement techniques' computational performances.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源