论文标题

特征向量辅助的统计推断,用于信号加上噪声矩阵模型

Eigenvector-Assisted Statistical Inference for Signal-Plus-Noise Matrix Models

论文作者

Xie, Fangzheng, Wu, Dingbo

论文摘要

在本文中,我们开发了一个广义的贝叶斯推理框架,用于在高维统计和许多应用中产生的信号加上噪声矩阵模型的集合。该框架是在数据矩阵的领先特征向量的帮助下建立在渐近公正的估计方程之上的。估计方程的解决方案与适当的统计标准函数的最大化器一致。通用后分布是通过用标准函数替换贝叶斯公式中通常的对数可能性函数来构建的。所提出的框架不需要完整的采样分布规范,并且可以通过马尔可夫链蒙特卡洛采样器进行不确定性定量,从而避免了重新采样数据矩阵的不便。在轻度的规律性条件下,我们建立了估计方程估计器和广义后验分布的较大样本特性。特别是,只要所谓的广义信息平等拥有,普遍的后验可信集具有正确的频繁命名覆盖概率。通过分析合成数据集和现实世界酶网络数据集证明了所提出框架的有效性和实用性。

In this paper, we develop a generalized Bayesian inference framework for a collection of signal-plus-noise matrix models arising in high-dimensional statistics and many applications. The framework is built upon an asymptotically unbiased estimating equation with the assistance of the leading eigenvectors of the data matrix. The solution to the estimating equation coincides with the maximizer of an appropriate statistical criterion function. The generalized posterior distribution is constructed by replacing the usual log-likelihood function in the Bayes formula with the criterion function. The proposed framework does not require the complete specification of the sampling distribution and is convenient for uncertainty quantification via a Markov Chain Monte Carlo sampler, circumventing the inconvenience of resampling the data matrix. Under mild regularity conditions, we establish the large sample properties of the estimating equation estimator and the generalized posterior distributions. In particular, the generalized posterior credible sets have the correct frequentist nominal coverage probability provided that the so-called generalized information equality holds. The validity and usefulness of the proposed framework are demonstrated through the analysis of synthetic datasets and the real-world ENZYMES network datasets.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源