论文标题
弱监督的补丁标签推理网络,可在野外有效的路面遇险检测和识别
Weakly Supervised Patch Label Inference Networks for Efficient Pavement Distress Detection and Recognition in the Wild
论文作者
论文摘要
自动基于图像的路面遇险检测和识别对于路面维护和管理至关重要。但是,现有的基于深度学习的方法在很大程度上忽略了路面图像的特定特征,例如高图像分辨率和低遇险面积比率,并且无法端到端训练。在本文中,我们提出了一系列简单而有效的端到端深度学习方法,称为弱监督的补丁标签推理网络(WSPLIN),以有效地在各种应用程序设置下解决这些任务。 WSPLIN将完全监督的路面图像分类问题转换为解决方案的弱监督的路面补丁分类问题。具体而言,WSPLIN首先将不同尺度的路面图像划分为具有不同收集策略的补丁,然后采用补丁标签推理网络(PLIN)来推断这些贴片的标签,以充分利用分辨率和规模信息。值得注意的是,我们根据遇险分配的先验知识设计了一个补丁标签的稀疏性约束,并利用综合决策网络(CDN)以弱监督的方式指导PLIN的培训。因此,PLIN生产的贴剂标签提供了可解释的中间信息,例如粗糙的位置和遇险类型。我们在名为CQU-BPDD的大规模沥青路面遇险数据集上评估了我们的方法,并在crack500增强的新建的crack500(crack500-pdd)数据集(crack500-pdd)数据集中评估了我们的方法。广泛的结果证明了我们方法在性能和效率方面的优越性。 WSPLIN的源代码在https://github.com/dearcaat/wsplin上发布。
Automatic image-based pavement distress detection and recognition are vital for pavement maintenance and management. However, existing deep learning-based methods largely omit the specific characteristics of pavement images, such as high image resolution and low distress area ratio, and are not end-to-end trainable. In this paper, we present a series of simple yet effective end-to-end deep learning approaches named Weakly Supervised Patch Label Inference Networks (WSPLIN) for efficiently addressing these tasks under various application settings. WSPLIN transforms the fully supervised pavement image classification problem into a weakly supervised pavement patch classification problem for solutions. Specifically, WSPLIN first divides the pavement image under different scales into patches with different collection strategies and then employs a Patch Label Inference Network (PLIN) to infer the labels of these patches to fully exploit the resolution and scale information. Notably, we design a patch label sparsity constraint based on the prior knowledge of distress distribution and leverage the Comprehensive Decision Network (CDN) to guide the training of PLIN in a weakly supervised way. Therefore, the patch labels produced by PLIN provide interpretable intermediate information, such as the rough location and the type of distress. We evaluate our method on a large-scale bituminous pavement distress dataset named CQU-BPDD and the augmented Crack500 (Crack500-PDD) dataset, which is a newly constructed pavement distress detection dataset augmented from the Crack500. Extensive results demonstrate the superiority of our method over baselines in both performance and efficiency. The source codes of WSPLIN are released on https://github.com/DearCaat/wsplin.