论文标题
Mellin振幅的缩放指数,以从混乱上的边界衍生在平面s-矩阵上的界限
Scaling exponents of Mellin amplitudes for deriving bounds on flat space S-matrices from bounds on chaos
论文作者
论文摘要
我们研究了缩放指数$ a $ a $在树级平面空间S-矩阵的regge限制中,具有外部无质量标量和另一个缩放指数$ a'$ a'$ a'$ a'在相应的四点标量相关器的regge限制中,通过使用Mellin Amplitudes的缩放指数。我们得出了$ a'\ ge a $,这导致了树级平面空间s-矩阵的regge生长界限,从混乱中,在ADS/CFT对应关系的平坦空间限制中,来自Mellin振幅的多项式界限,用于本地体积描述。当系数在平坦的空间限制中并不小时,我们还显示了与有限中间旋转的$ t $ channel中的共形块扩展中的$ a'= a'= a'= a $。
We study an inequality between a scaling exponent $A$ in the Regge limit of tree-level flat space S-matrices with external massless scalars and another scaling exponent $A'$ in the Regge limit of the corresponding four-point scalar conformal correlators by using scaling exponents of Mellin amplitudes. We derive $A'\ge A$, which leads to the Regge growth bound of tree-level flat space S-matrices from the chaos bound in the flat space limit of the AdS/CFT correspondence, from polynomial boundedness of the Mellin amplitudes for local bulk descriptions. We also show $A'=A$ from the conformal block expansion in the $t$-channel with finite intermediate spins when coefficients are not small in the flat space limit.