论文标题
基于图的主动学习,用于半监督的SAR数据分类
Graph-based Active Learning for Semi-supervised Classification of SAR Data
论文作者
论文摘要
我们提出了一种通过将基于图的学习和神经网络方法的思想结合在主动学习框架中的想法来分类合成孔径数据(SAR)数据的新方法。机器学习中的基于图的方法基于从数据构建的相似图。当数据由由场景组成的原始图像组成时,无关的信息可以使分类任务更加困难。近年来,神经网络方法已被证明为从SAR图像中提取模式提供了有希望的框架。但是,这些方法需要大量的培训数据以避免过度拟合。同时,这种培训数据通常无法用于感兴趣的应用,例如自动目标识别(ATR)和SAR数据。我们使用卷积神经网络变化自动编码器(CNNVAE)将SAR数据嵌入特征空间,然后从嵌入式数据中构造相似性图,并应用基于图形的半监督学习技术。 CNNVAE功能嵌入和图形构造不需要标记的数据,这可以降低过度拟合并提高低标签速率以图形学习的概括性能。此外,该方法很容易在数据标记过程中融合一个用于主动学习的人类。我们提出了有希望的结果,并将它们与其他标记数据的ATR的移动和固定目标获取和识别(MSTAR)数据集进行比较。
We present a novel method for classification of Synthetic Aperture Radar (SAR) data by combining ideas from graph-based learning and neural network methods within an active learning framework. Graph-based methods in machine learning are based on a similarity graph constructed from the data. When the data consists of raw images composed of scenes, extraneous information can make the classification task more difficult. In recent years, neural network methods have been shown to provide a promising framework for extracting patterns from SAR images. These methods, however, require ample training data to avoid overfitting. At the same time, such training data are often unavailable for applications of interest, such as automatic target recognition (ATR) and SAR data. We use a Convolutional Neural Network Variational Autoencoder (CNNVAE) to embed SAR data into a feature space, and then construct a similarity graph from the embedded data and apply graph-based semi-supervised learning techniques. The CNNVAE feature embedding and graph construction requires no labeled data, which reduces overfitting and improves the generalization performance of graph learning at low label rates. Furthermore, the method easily incorporates a human-in-the-loop for active learning in the data-labeling process. We present promising results and compare them to other standard machine learning methods on the Moving and Stationary Target Acquisition and Recognition (MSTAR) dataset for ATR with small amounts of labeled data.