论文标题
蜿蜒的tachyons和尖长的黑洞
Winding Tachyons and Stringy Black Holes
论文作者
论文摘要
我们在$ \ mathbb {r}^d \ times \ mathbb {s}^1 $上研究字符串理论。对于热力学的应用,$ \ mathbb {s}^1 $的圆周是反向温度,$β$。我们表明,对于$ d = 6 $,在反hagedorn温度下的低能有效场理论($β=β_H$)具有一个可正常的球形对称溶液的一个参数家族,它们破坏了绕$ \ mathbb {s s}^1 $的绕组对称性。所得的背景表现出增强的对称性,对称性破坏模式$ su(2)_l \ times su(2)_r \ to su(2)_ {\ rm对角} $。这些背景的有效现场理论分析对于某些参数可靠。更普遍地,它们是由世界表CFT描述的,它与$ \ Mathbb {r}^6 \ times \ Mathbb {s}^1 $相对应的自由理论对应,并与非亚伯利亚的thirring变形和$ r $相关的耦合所扰动。我们建议,在一定的缩放限制中,这些背景中的字符串理论由$ sl(2,\ mathbb {r})/u(1)$雪茄描述,并提供了对弱耦合的高度激发的热力学描述。我们还讨论了这些背景与近代鹰温度的欧几里得黑洞的关系,并可能对其他$ d $进行概括。
We study string theory on $\mathbb{R}^d\times \mathbb{S}^1$. For applications to thermodynamics, the circumference of the $\mathbb{S}^1$ is the inverse temperature, $β$. We show that for $d=6$, the low energy effective field theory at the inverse Hagedorn temperature, $β=β_H$, has a one parameter family of normalizable spherically symmetric solutions that break the winding symmetry around the $\mathbb{S}^1$. The resulting backgrounds exhibit an enhanced symmetry, with the symmetry breaking pattern $SU(2)_L\times SU(2)_R\to SU(2)_{\rm diagonal}$. The effective field theory analysis of these backgrounds is reliable for some range of parameters. More generally, they are described by a worldsheet CFT, which corresponds to the free theory on $\mathbb{R}^6\times \mathbb{S}^1$ perturbed by a non-abelian Thirring deformation with an $r$-dependent coupling. We propose that, in a certain scaling limit, string theory in these backgrounds is described by the $SL(2,\mathbb{R})/U(1)$ cigar, and provides a thermodynamic description of weakly coupled highly excited fundamental strings. We also discuss the relation of these backgrounds to Euclidean black holes with near-Hagedorn Hawking temperature, and possible generalizations to other $d$.