论文标题
好奇心驱动的自我监督的触觉探索未知物体
Curiosity Driven Self-supervised Tactile Exploration of Unknown Objects
论文作者
论文摘要
生物体可以表现出的复杂行为是基于其感知并有效地解释其周围复杂性的能力。相关信息通常分布在多种模式之间,并且要求生物体除了寻求信息行为外,还必须表现出信息同化能力。尽管生物生物利用多种感应方式进行决策,但当前的机器人过于依赖视觉投入。在这项工作中,我们希望以利用(相对爆发的)触摸方式来增强我们的机器人。为了集中研究,我们研究了场景重建问题,其中触摸是唯一可用的传感方式。我们提出了触觉大满贯(TSLAM) - 为代理准备寻求行为的信息,并使用对常见家务物品的隐含理解来重建正在探索的对象的几何细节。使用拟人化的“ Adroit”手,我们证明TSLAM在相互作用6秒内重建不同复杂性的对象非常有效。我们还通过仅在3D仓库对象上进行培训并对ContactDB对象进行测试来建立TSLAM的普遍性。
Intricate behaviors an organism can exhibit is predicated on its ability to sense and effectively interpret complexities of its surroundings. Relevant information is often distributed between multiple modalities, and requires the organism to exhibit information assimilation capabilities in addition to information seeking behaviors. While biological beings leverage multiple sensing modalities for decision making, current robots are overly reliant on visual inputs. In this work, we want to augment our robots with the ability to leverage the (relatively under-explored) modality of touch. To focus our investigation, we study the problem of scene reconstruction where touch is the only available sensing modality. We present Tactile Slam (tSLAM) -- which prepares an agent to acquire information seeking behavior and use implicit understanding of common household items to reconstruct the geometric details of the object under exploration. Using the anthropomorphic `ADROIT' hand, we demonstrate that tSLAM is highly effective in reconstructing objects of varying complexities within 6 seconds of interactions. We also established the generality of tSLAM by training only on 3D Warehouse objects and testing on ContactDB objects.