论文标题
Tutte多项式用于常规的矩形
Tutte polynomials for regular oriented matroids
论文作者
论文摘要
储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。
The Tutte polynomial is a fundamental invariant of graphs and matroids. In this article, we define a generalization of the Tutte polynomial to oriented graphs and regular oriented matroids. To any regular oriented matroid $N$, we associate a polynomial invariant $A_N(q,y,z)$, which we call the A-polynomial. The A-polynomial has the following interesting properties among many others: 1. a specialization of $A_N$ gives the Tutte polynomial of the unoriented matroid underlying $N$, 2. when the oriented matroid $N$ corresponds to an unoriented matroid (that is, when the elements of the ground set come in pairs with opposite orientations), the $A$-polynomial is equivalent to the Tutte polynomial of this unoriented matroid (up to a change of variables), 3. the A-polynomial $A_N$ detects, among other things, whether $N$ is acyclic and whether $N$ is totally cyclic. We explore various properties and specializations of the A-polynomial. We show that some of the known properties or the Tutte polynomial of matroids can be extended to the A-polynomial of regular oriented matroids. For instance, we show that a specialization of $A_N$ counts all the acyclic orientations obtained by reorienting some elements of $N$, according to the number of reoriented elements.